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ON MIXED FINITE ELEMENT METHODS 
FOR THE REISSNER-MINDLIN PLATE MODEL 

RICARDO DURAN AND ELSA LIBERMAN 

ABSTRACT. In this paper we analyze the convergence of mixed finite element 
approximations to the solution of the Reissner-Mindlin plate problem. We 
show that several known elements fall into our analysis, thus providing a unified 
approach. We also introduce a low-order triangular element which is optimal- 
order convergent uniformly in the plate thickness. 

1. INTRODUCTION 

We consider the approximation by mixed finite elements of the solution to 
the Reissner-Mindlin equations, which describe the displacement of a plate with 
small to moderate thickness subject to a transverse load. 

As is well known, standard finite element methods fail to give good approxi- 
mations when the plate thickness is too small, owing to a locking phenomenon. 
Instead, mixed methods, based on the introduction of the shear strain as a new 
variable, have been proven successful both theoretically and experimentally [2, 
4, 5, 6, 7, 9, 10]. 

In this paper we analyze the convergence of mixed approximations for the 
plate problem in a general framework. We obtain a general convergence the- 
orem, which can be applied to several elements, thereby providing a unified 
approach. For the Bathe-Dvorkin elements [6] our theorem provides an optimal- 
order error estimate under weaker regularity assumptions than those required 
in [4] (although still not optimal). Also, it can be applied to the higher-order 
elements introduced by Bathe and Brezzi [5], extending the estimates obtained 
by these authors in the limit case (thickness equal to 0). 

Recently, Arnold and Falk [2] proposed and analyzed a low-order triangular 
element. Their analysis is based on an equivalence between the plate equations 
and an uncoupled system of two Poisson equations plus a Stokes-like system. 
This equivalence was first introduced by Brezzi and Fortin in [9] and was ob- 
tained by using a Helmholtz decomposition of the shear strain. Arnold and Falk 
proved optimal-order convergence uniformly in the plate thickness for their el- 
ements by introducing a discrete version of the Helmholtz decomposition. Our 
analysis provides a direct proof of the convergence of the Arnold-Falk elements 
without using the discrete Helmholtz decomnosition. 
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We also introduce a new low-order triangular element for which we prove 
optimal error estimates independently of the plate thickness. 

2. STATEMENT OF THE PROBLEM AND NOTATIONS 

We use standard notation for the Sobolev spaces Hk () and H& (Q) with 
the norm 

k = S iD UIIL2(Q), 
Jal<k 

both for scalar and vector functions. Boldface type is used to denote vector 
quantities. 

Let Q x (-4 2) be the region occupied by the undeformed plate, where 
Q c 12 is a simply connected polygon and 0 < t < 1 is the plate thickness. 

Let us denote by w and fi the transverse displacement of the midsection 
of the plate and the rotation of fibers normal to it, respectively. Then, for 
homogeneous Dirichlet boundary conditions (i.e., a clamped plate) the Reissner- 
Mindlin model states that I? E Ho(Q) and w E Ho' (Q) satisfy 

(2.1) t3a(f, q) + At(Vw - f, Vv - q) = (g, v) 

for every q E Ho(Q) and v E Ho (Q), where (, ) denotes the scalar product 
in either L2(Q) or L2(Q), and 

a(fiq)E= F H 
0 0 11 0/ 0132 0712 

12(l -l2) JQ[\Oxi aX2) ax1 Ox, aX2) OX2 

+_1 - V 013, + ( 71l+ 0712V 
+ 4-~ ii + I 

2 OX2 ax1 I\X2 ax1,/ 
where E is the Young modulus, v the Poisson ratio, A = Ek/2(1 + v) where 
k is a constant, and g represents the transverse load. 

It is known that a(, ) is coercive in HI(Q), and so it defines a scalar product 
in this space equivalent to the usual one. 

In order to analyze the behavior of the approximations for small values of 
t, it is natural [4] to consider a load of the form g = t3f. Then, if A = 1 
for the sake of simplicity, problem (2.1) reduces to finding I? E Ho(Q) and 
w E Ho (Q) such that 

(2.2) a(fi, q) + t-2(Vw -,Vv - q) =(fv) 

for every q E Ho(Q) and v E Ho (Q), or equivalently, 
(2.3a) a(fI, t) + (y, Vv - t) = (f, v) 

and 

(2.3b) y = t-2(Vw -P) 

for every_ q E HI(Q) and v E Ho'(Q). 
In what follows we denote by C a constant independent of h and t but not 

necessarily the same at each occurrence. 

3. MIXED FINITE ELEMENT APPROXIMATIONS AND ERROR ANALYSIS 

Let {$h}O<h< 1 be a regular family of triangulations of Q [11], and let 
Hh, Wh, and rh be finite element spaces associated with gh such that 

Hh c Ho(Q), Wh c Ho (Q), and FhcL2(Q). 
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We assume that 

(3.1) VWhc rh- 

A mixed approximation to the solution of problem (2.3) is obtained by re- 
laxing the equation (2.3b) by means of a projection or interpolation over rF . 

Assume that we have defined an operator H: V -- F, where Ho(Q) c V c 
L2(Q), such that 

(3.2) 11,J - H'IJ1o < ChIJ7 1I1 

for every 7 E HI (Q) n V. 
Then, we define (Ah, Wh, Yh) E Hh X Wh x rh by 

(3.3a) a(8ht) + (yh, Vv - Ha) = (f, v) 

and 

(3.3b) Yh =t (VWh-Huh) 

for every i E Hh and v E Wh. 
The existence and uniqueness of the solution follows easily from the coer- 

civeness of a(, ). 

Remark 3.1. The approximate solutions could be defined even if (3.1) is not sat- 
isfied. In that case we should replace Vv and VWh by H(Vv) and H(Vwh), 
respectively, in (3.3) [10]. 

However, since in all of our applications (3.1) holds, we will not analyze the 
more general case. 

From (2.3a) we obtain 

a(f, i) + (y, Vv - HIi) = (f, v) - (yH I - a) 

for every 1 E H(Q1) and v E Ho' (Q) and, subtracting (3.3a) from this equa- 
tion, we get the error equation 

(3.4) a(fl? -Ph, a ) + (Y-Yh , VV -H ) = ( , 'a-f l) 

for every u E Hh and V E Wh - 

Lemma 3.1. Let f8 E Hh, b E Wh, and '=t-2(Vtb - Hi) Erh; then, 

(3.5) It - lPhIi + tlly -Yh110 < C{I1 - lI + tll -yIlo + hIyllo}. 
Proof. From (3.4) we get 

(3.6) a(-ft h, a) + 4 -Yh, Vv- Ha) 

=a( - 1, - ) + (' + -y, Vv - H,) + (y, i- Hi,) 

for every ' E Hh and v E Wh . Taking ' = P-,h E Hh and V = W-Wh E Wh, 
we have 

Yh = t-2(VV - H), 

and inserting this in (3.6), we obtain 

a(fi-P8h, fi-P8h) + ty-yhYh -Yh) 

(3.7) =a(ft-A, ft -.8h) + t2(Y-_y5 Y-h) 
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Therefore, using the coerciveness and continuity of a(, ), the Schwarz inequal- 
ity, and the arithmetic geometric mean inequality, we obtain the estimate 

IP-I8h hIl I + ty 1- YhIlo1 
< C{ 11f - PII + t2II - vII0 + 1IIIIoII(P - Ph) - H(P - Ph)IIO}- 

Using (3.2) to bound the last term on the right-hand side, we get (3.5). El 

From Lemma 3.1 we see that if there exist fP E Hh and 4' E Wh such that 
p and y are good approximations of p and y, respectively, we get an error 
estimate. Therefore, we can state the main result of this section. 

Theorem 3.1. Let the spaces Hh c Ho(Q), Wh c Ho' (Q), rF c L2(Q) and the 
operator H be such that (3.1) and (3.2) hold. If there exist P E Hh and Tb E Wh 
and an operator H: v -) rh such that 

(3.8) 11 - III < ChIIPII112, 

(3.9) y Iy 

with y defined as in the lemma and 

(3.10) hI - I'iqlo < ChIqIII,1 

for every 7 E HI (Q) n V, then 

(3.11) 11l - flh 1 + tIIYy-hiio < Ch{f118112 + tilYIlI + iiiio}- 
Proof. (3.1 1) follows immediately from Lemma 3.1, (3.8), (3.9), and (3. 1 0). El 

Corollary 3.1. Under the assumptions of the theorem we have 

(3.12) 11w - WhIIl < Ch{f118112 + tihyihi + iiiio}- 
Proof. We have 

Vw - VWh = t2(y-Yh) + fl-Huh , 

hence 
IIW - WhIll < t2Iy -h11 0 + 11i - "fib + iiH( - 8h)IIo 

Now, from (3.2) we get 

1iiH( -.8h)iio < C118 -JPhIII 

and so, applying again (3.2) and Theorem 3.1, we obtain (3.12). El 

4. EXAMPLES 

In this section we show several elements for which our error analysis can be 
applied. 

In the first two examples, condition (3.9) will be satisfied with I = H. In 
this case, (3.9) can be written in the following way: 

(4.1) H(Vw) + H(f - P) = VWb. 

Therefore, it is enough to choose the spaces such that there exists a good ap- 
proximation fP E Hh of fl for which a Tb E Wh satisfying (4. 1) exists. 
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Following the arguments in [7], one can see that (4.1) is satisfied if the spaces 
and H are chosen in the following way: 

rh C Ho(rot, Q) = {u E L2(Q): rotu E L2(Q) andu * x = 0 on OQ}, 

where 

rotu= - 0U2 + 08 
Ox1 Ox2 

and x is the unit tangent to the boundary, 

(4.2) H: HI1(Q) n Ho(rot, Q) -* rh is such that jrot(ii - H,)q = 0 

for every q E Qh = rotrh, 

(4.3) Wh c HO (Q) is such that if u E rh and rotu = 0, then 
u=Vv 

for some v E Wh, and 

Hh c Ho(Q) and there exists an interpolation operator 

R: Ho(Q) - Hh 
such that 

(4.4) jrot(I? - Rfl)q = 0 

for every q E Qh and 

(4.5) 11/1 - Rfi 1 < ChIf1II2 

for every fl E H2 (Q) 
Indeed, in this case we can take fl = Rfl, and letting a = fl - fl in (4.2) 

and using (4.4), we get 

jrot(I8 -fi)q = jrotf(If -fi)q = 0 

for every q E Qh - 
Therefore, taking q = rot H(fl - fi), we have rot H(fl - At) = 0, which 

together with (4.3) yields H(ft - fi) = VvI for some VI E Wh . 
Analogously, we see that H(Vw) = Vv2 for some v2 E Wh, and so (4.1) is 

satisfied with 4' = VI + v2 - 
In [7], Bathe, Brezzi, and Fortin obtained error estimates in the limit case 

t = 0 under the assumptions (4.2), (4.3), (4.4), and (4.5). Therefore, our 
analysis extends to the case t > 0 the results obtained in [5] for the limit 
problem t = 0. 

We use the standard notation for the spaces of polynomials, that is, J?Ak is 
the space of polynomials of degree less than or equal to k and Q,1 is the 
space of polynomials of degree less than or equal to i in the first variable and 
to j in the second one. Also, we set Qk = Qkk - 
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Example 4.1. A new low-order triangular element. Let Sh be a partition into 
triangles. We take rh to be a rotation of the Raviart-Thomas space of the 
lowest order, namely, 

rh = {# E Ho(rot, Q): I'T E o E (-x2, xl)Yo, VT E S}-. 

So, there exists H satisfying (3.2) and (4.2) [12]. We take Wh to be the standard 
space of piecewise linear continuous functions, that is, 

Wh = {V E HO'(Q): VIT E 9l, VT E 4}, 

and so (3.1) and (4.3) can be easily verified. 
To define H h, we take a rotation of a space introduced for the Stokes problem 

[13]. 
Let T E I9'h and let Al, A2, A3 be its barycentric coordinates. We denote by 

Ti a unit tangent vector to the side Ai = 0 and define 

PI = A2A3TI, P2 = AIA3T2, P3 = AIA2T3 

and 
Hh = f 7 E HI(Q): 'lIT E.9Z1 E (Pi, P2, P3), VT E Sh}, 

where (Pi, P2, P3) is the space spanned by {Pi}I<i<?3- 
Therefore, the existence of R satisfying (4.4) follows by a simple rotation 

and known results [13]. 
So we can apply Theorem 3.1 and its corollary with i? = Rfl, and we get 

II1 - flhIIl + tIIY-YhIIO + IIW - WhI|1 < Ch{IIflII2 + tilYlI1 + IIIIo}1 

When Q is a convex polygon it is known (see [2, 9]) that 

(4.6) 11/8112 + tIlyll 1 + IIIIo < CIIfII, 
and so we obtain an optimal error estimate with constant independent of the 
plate thickness, namely, 

11 - flhIIl + tIIy-Yh llo + 11W - WhI|l < ChIlfilo- 

Example 4.2. The Bathe-Brezzi elements of second order. In [5], Bathe and 
Brezzi introduced the following rectangular elements: 

rh = {/i E Ho(rot, Q): jIIR E Q VR E 3h}, 

where Q = (1, X1, X2, X1X2, X22) X (1, X1, X2, X1X2, X2) (which is a rotation 
of the space introduced in [8]), 

Wh = {v E HO(Q): VIR E Qr, VR ESh}, 

where Q = (1, X1, X2, X1X2, X1, X, X12X2, X1X2), and 

= PiE Ho(Q): hR EQ2, VR ESh}- 
Clearly, (3.1) and (4.3) hold. The existence of H and R satisfying (4.2), 

(4.4), and (4.5) is known [8, 13], and so the error analysis of Lemma 3.1 can 
be carried out in this case. In order to obtain a second-order estimate, the last 
term on the right-hand side of (3.7) can be treated as in [5]. So we obtain the 
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following error estimate, which generalizes for t > 0 that obtained in [5] for 
the case t = 0: 

II1 -flh |II + tIly-YhIIO + 11W -Wh IIl < Ch {11l1|3 + tI4YII2 + 1I1Ili}. 

For similar triangular and higher-order elements we refer to [7]. We can 
apply our analysis to those cases obtaining optimal error estimates. 

Example 4.3. The Bathe-Dvorkin elements. Let Sh be a partition into rectan- 
gles. Then the Bathe-Dvorkin elements are defined as follows [4, 6]: 

rh = {u E Ho(rot, Q): ,IR E Qo, I x Ql,o, VR E S}, 

Wh = {v E HO'(Q): VIR E Q1, VR ES9h}, 

e= {i E Ho(Q): 'JR E Q1, VR E Sh}. 
Since rh is a rotation of the lowest-order Raviart-Thomas space [14], it is 
known that there exists an interpolation operator H satisfying (4.2) and (3.2) 
[4, 14]. Also, (3.1) and (4.3) hold, as is easily seen. 

In this case we have 

Qh = {q E L2(Q): qIR E&HO, VR E g and q =O}. 

However, it is known [13] that in this case the operator R satisfying (4.4) and 
(4.5) does not exist. Nevertheless, we will prove that (3.9) and (3.10) hold in the 
case of uniform meshes. More precisely, we assume that the family of meshes 
{Sh} is obtained by uniform refinement of a starting rectangular mesh in such 
a way that at each step every element is divided uniformly in sixteen rectangles. 

In order to prove (3.9) and (3.10), we need to introduce some notation. 
Let qo E Qh be the checkerboard function, that is, a function which takes the 

values 1 and -1 alternately in the elements. Let Qh be the space orthogonal 
to q0, namely, 

Qh = {q E Qh: (q, qo) = ?}, 

and let P: L2 -_ Qh be the orthogonal projection. 
The following approximation properties for P hold: 

(4.7) JII - PqJ1o < ChJ~qI 

for every q E HI (Q) and 

(4.8) Jil - PqII-I < ChJlqJJo 

for every q E L2 (Q) . (Here and thereafter, 11 11 -I denotes the norm in the dual 
space of HI (Q).) 

Indeed, (4.7) follows from the fact that Qh contains the piecewise constants 
over a coarser mesh of size 2h, and (4.8) is an easy consequence of (4.7). 

Following the arguments in [4], we can prove that for any I? E Hs(Q)nHO' (Q), 
2 < s < 3, there exists fl E Hh satisfying 

(4.9) jrot - f)q = 0 

for every q E Qh and 

(4.10) 11 - 1 1I < Chs-2I11.Is. 
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Condition (4.9) together with (4.2) yields 

(4.11) jrotf(If - f8)q = 0 

for every q E Qh- 
Now, since 

J rot HIfqo =jrotlqo = O 

(see [13]), we have that rot Hft E Qh, which together with (4.1 1) gives 

(4.12) rot HI? = P rot Hf8. 

For i E Ho (rot, Q) we define H1,7 in the following way. Let X(X7) E Ho (rot, Q) 
be such that 

(4.13) rot X(X7) = rot fIH - P rot HI, 

and 

(4.14) 11x( J)jjls < C11 rot I1X - P rot I1jjls-j, s = O. 1. 
Take, for example, X(X7) = curl 0 = (-0Oq/0x2, q00/0xI), where 0 is the so- 
lution of the problem 

-AX = rot fI - Prot fl in Q 

with homogeneous Neumann boundary conditions. 
Then we set 

(4.15) i = H (q - X(X)) 

and show that there exists 4' E Wh such that (3.9) is satisfied with fI defined 
as above. 

Indeed, from (2.3b) we have 

t2 roty =-rotf , 
which in view of (4.2) implies 

t2 rotly= - rot flf. 
Therefore, using (4.12), we obtain 

t2P rotly= - rot lHfl, 
and so, by (4.2) and (4.13) with , = y, we have 

(4.16) rot HlX(y) = rot ly + t-2rot HI8. 

Now the existence of 4', and therefore (3.9), follow from (4.3), (4.15), and 
(4.16). 

Finally, let us verify (3.10). We have 

11jj7 - fiqj71o < 11jj - HqJ10l + IllHx(q)Jlo 
The first term is bounded by (3.2) while for the second we use (3.2), (4.2), (4.8), 
and (4.14) to obtain 

IIHx(q)lIo < ChIlx(,)Iji + lIx(')Ijo 
< ChIl rot HI1,7o + Cl1 rot HI, - ProtHI111- 
< ChIl rotHIIvo < Chll rotiljo < ChIliljli. 
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Therefore, we can apply Theorem 3.1 and its corollary, with (3.8) replaced by 
(4.10) with s = 3, to obtain the error estimate 

(4.17) IIP -,8h 1l I + tIy- Yh Ho + w - Wh 1l ? < Ch{ 118113 + tilylli + IIYIIo}1 

Remark 4.1. The estimate (4.17) improves the one obtained in [4], which re- 
quired y E H2(0). 

Taking 5 = 2 in (4.10), we also obtain 

(4.18) lIP -.Phill1 + tIIY- YhIO + IIW - Whlll < Ch1I { 11f8115/2 + tilylli + IIYIIo}. 

When Q has a smooth boundary, it is known (see [3]) that the norms on the 
right-hand side of (4.18) are bounded uniformly in t. The natural extension 
of the results in [2] to a square domain, together with (4.18), would provide an 
O(h1/2) error estimate uniform in the plate thickness. 

It would be very interesting to relax also the regularity requirement on f? in 
order to obtain optimal-order convergence independently of the plate thickness. 

5. THE NONCONFORMING ELEMENTS OF ARNOLD AND FALK 

In this section we extend the error analysis of ?3 to the Arnold and Falk 
method [2], in which the transverse displacement w is approximated by non- 
conforming elements. 

The Arnold and Falk elements are defined as follows. Let S; be a partition 
of Q into triangles; then 

Fh = {j E L2(2): /AT Egoo, VT E S}, 

Wh = {V E L2(Q): VIT E Y1, VT E Sh, and v is continuous at 
midpoints of element edges and vanishes at 

midpoints of boundary edges}, 

and 
Hh= {E Ho(Q): qlT l ED59obT, VT E h}, 

where bT is a bubble function of degree 3, namely, bT E 93 and bT = 0 on 0 T. 
For v E Wh, let VhV E L2(Q) be the piecewise constant vector function 

whose restriction to each T E 5h is given by VV IT . 
Let P: L2(Q) -- Fhs be the L2-projection. Then the approximation of [2] 

is obtained by replacing V by Vh and taking [I = P in (3.3). That is, 
(ah, Wh, yh) e Hh X Wh X rh satisfy 

(5. 1a) a(.8h' 7) + (7h ' VhV - Pit) V o, V) 

and 

(5.1b) Yh t (VhWh-Pflh) 

for every 11 E Hh and V E Wh- 
Since Wh ? Ho' (Q), the error equation includes consistency terms, and there- 

fore (3.4) is modified as follows: 

a(ft - j ih, q) + (Y - Yh, VhV - Pq) = (7, v - Pa)V+ vy X nT 

Toc ATh 
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for every i E Hh and v E Wh, where nT is the outer unit normal to the 
boundary of T. 

Proceeding as in Lemma 3.1, we obtain 

11 - fihIi + t2IIY-YhIIo2 < C{||f - Phil1 + t2liylg + h2jjyjj0} 

(5.2) + v-JT V T 

for f eH, w e Wh v t-2(Vh w-PI8)erh,and v=tb-whEWh. 
In order to estimate the last term on the right-hand side of (5.2), we use 

the following lemma due to Crouzeix and Raviart [12], which is crucial for the 
analysis on nonconforming methods. 

Lemma 5.1. Let q e HI(Q) and v E Wh; then 

r JOT tvo*nT < Chiiiii |VhVIIo. 

However, a direct application of this lemma would give an estimate which 
depends on IIYI 1 , which is not bounded uniformly in t [3]. Therefore, we have 
to proceed in a different way to obtain a modification of Lemma 3.1. 

Since Q is simply connected, y can be written as 

y = Vr + curlp, 
where r E Ho (Q) and p E H1 (Q) with fi p = 0. 

Lemma 5.2. Let IJ E Hh Wi e Wh, and y = t-2(Vhw - Pf) e rh; then 

(5.3) |li - flhII + ti y-Yh iio < Cf 11-1P1 + tIIY-Yiio 
+ h(I1rII2 + IIPII 1 

+ tIIPII2)}* 
Proof. Applying Lemma 5.1, we get 

Z 
JaTvVr - nT < Chiirii2iiVhVIio, 

and since 

(5.4) VhV=t2(j-yh)+P(P-Ph), 

we obtain 

(5.5) E j vVr 
* nT < ChIIrII2 -(t IIY-Yh Ilo + lIP -flh 110)- 

TEgh 

On the other hand, we have 

(5.6) j v curlp * nT= curlp Vhv. 
T E g T T Egh- 

Let i E H1(Q) be a continuous piecewise linear approximation of p such 
that 

(5. 7) lln_ - '11 < ChIlIPl 
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(5.8) IIp - PI1o < ChIIpIII 
and 

(5.9) Wll1i < CIIPIII 
(for example, take fi to be the regularized interpolation of Clement ; see [13]). 

It is easily seen that 

E Jcurli 3*VhV =0, 
Tg 

and so we get from (5.4) and (5.6) that 

(5.10) E ITv curl p nT = (curl(p - p) t2(Y - Yh) + P(f - Ph)). 
Tef4 

Now using (5.7), we have 

I (curl(p - f), t2(y -Yh))I < ChIIPII2T2IIgyhIIlo' 

while to estimate the other term in (5.10), we decompose it as follows: 

(curl(p - 'i), P(f? - Ph) - (P - Ph)) + (curl(p - P), fP - Ph). 

Now, using (5.9) and known approximation properties for the L2-projection, 
we get 

I(curl(p - 3), P(f?- Ph) - (/ - flh))I < CIIpI II hIIf - flh | l, 

and using (5.8), we obtain 

I(curl(p - i), fP - flh) = I(p - i, rot( - flh))I 
< ChIIpIIIIIft - PlhIIl- 

Therefore, collecting all the estimates, we obtain 

(5.11) ZE IT curlpnT < Ch{11PI12t t21i-YhIIO+ IIPIIIIIf -PhIIl}I1 

Now, from (5.5) and (5.11) we get 

E J vy nT < Ch(llrll2 + tIlpII2 + IIpIII)(tll-YhIIO + I1-flhlll), 

which together with (5.2) yields (5.3), and so the lemma is proved. El 
Now, as in the conforming case, it is enough to see that there exists P8 E Hh 

satisfying 

(5.12) 11 - PII < ChIIPII12 

and TD E Wh such that y=Py, that is, 

(5.13) P(Vw) + P(f6 - P) = Vh . 

First, we take ft = Rfl, where R is the interpolation defined in [1], which 
satisfies 

J(8-Ri) * q = 0 
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for every q E ,Po and every T E 7hg. Therefore, (5.12) is satisfied [1] and 
P(I8 - 8) = 0. So, (5.13) will hold if there exists Tb E Vh such that P(Vw) = 

VhtD, or 

(5.14) JT(VW-VhU)*q=O 

for every q E 90 and every T e Sh. But (5.14) is equivalent to 

(5.15) l(w - w)q nT=O. 
AT 

Now, let 1 be a side of T and let Ml be the midpoint of 1. We take wi E Wh 
such that 

w(Ml) = Ill J I 

where Ill is the length of 1, and therefore (5.15), and consequently (5.13), are 
clearly satisfied. 

Then, applying Lemma 5.2, we obtain the error estimate 

11i -f8hll + tilY-yhllo < Ch{11fi112 + 1lr112 + iIPIIi + tjjPIj2} 

and consequently, 

(5.16) iiVw - Vhwh lb < Ch{llflll2 + 11r112 + IIPIII + tjlpjj2}. 
If Q is a convex polygon, the right-hand side of (5.16) is bounded by CIlfIlo 

[2, 9], and therefore 

11 - P8hlII + tI1Y-hiI O + IIVw - Vh WIo < ChIIfIIo. 
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